Abstract
High-temperature stress (HS) severely threatens agricultural production. Pleurotus ostreatus is cultivated in many parts of the world, and its growth is strongly affected by HS. We previously reported that metabolic rearrangement occurred in HS, but the gene expression levels of several key enzymes remained unchanged. Therefore, in this study, we investigated the contribution of posttranslational modifications of proteins to HS resistance in P. ostreatus. We found that the level of acetylation of P. ostreatus decreased under short-term HS treatment and increased as the duration of HS treatment increased. Acetylation omics revealed that almost all metabolic enzymes were acetylated. We found that deacetylation under HS can improve the growth recovery ability of mycelia, the activity of matrix-degrading enzyme, and the contents of antioxidants, such as nicotinamide adenine dinucleotide phosphate (NADPH) and glutathione (GSH), but can decreased H2O2 levels. In vitro acetylation experiments and point mutations revealed that the deacetylase SIRT2 increased the activity of glutathione transferases (GSTs) by deacetylating GST1 66K, GST2 206K, and GST2 233K. Together, SIRT2 is activated by short-term HS and improves its antioxidant activity by deacetylating GSTs, thereby improving the resistance of P. ostreatus to HS. In this study, we identified new non-histone substrate proteins and new lysine acetylation sites of SIRT2 under HS. We also discovered the role of non-histone acetylation in the adaptation of organisms to HS.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.