Abstract

Acute myeloid leukemia (AML) is a highly aggressive form of cancer that is frequently diagnosed in adults and small molecule inhibitors have gained significant attention as a potential treatment option for AML. The up-regulated genes in AML were identified through bioinformatics analysis. Potential candidate agents were selected through pharmacogenomics analysis. Proteomic experiments were conducted to determine the molecular mechanism after inhibitor treatment. To evaluate drug synergy, both cellular functional experiments and an AML mouse model were used. Through bioinformatics analysis, we conducted a screening for genes that are highly expressed in AML, which led to the identification of nine small-molecule inhibitors. Among these inhibitors, the PI3K/mTOR inhibitor VS-5584 demonstrated significant effectiveness in inhibiting AML cell proliferation at low concentrations. Further testing revealed that VS-5584 induced apoptosis and cycle arrest of AML cells in a dose- and time-dependent manner. Proteomics analysis showed significant changes in protein expression profiles of AML cells after VS-5584 treatment, with 287 proteins being down-regulated and 71 proteins being up-regulated. The proteins that exhibited differential expression were primarily involved in regulating the cell cycle and apoptosis, as determined by GO analysis. Additionally, KEGG analysis indicated that the administration of VS-5584 predominantly affected the P53 and SIRT2 signaling pathways. The use of SIRT2 inhibitor SirReal2 alongside VS-5584 caused a significant reduction in the half-maximal inhibitory concentration (IC50 ) of VS-5584 on AML cells. In vivo, experiments suggested that VS-5584 combined with SirReal2 suppressed tumor growth in the subcutaneous model and extended the survival rate of mice injected with tumor cells via tail vein. Taken together, the PI3K/mTOR inhibitor VS-5584 was effective in suppressing AML cell proliferation. PI3K/mTOR inhibitor combined with SIRT2 inhibitor exhibited a synergistic inhibitory effect on AML cells. Our findings offer promising therapeutic strategies and drug candidates for the treatment of AML.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call