Abstract

AimsSirtuins have been implicated in the aging process, however, the functions of SIRT2 in post-maturation aging of oocytes are not fully understood. The purpose of the present investigation was to assess the roles of SIRT2 in aged oocytes and mechanisms involved. Main methodsThe fresh MII oocytes were aging in vitro, and treated with SIRT2 inhibitor (SirReal2), autophagy activator (Rapamycin), and autophagy inhibitor (3-Ma) for 24 h, respectively. Oocyte activation, cytoplasmic fragmentation, and spindle defects, mitochondrial distribution, ROS levels, ATP production, mitochondrial membrane potential, and early apoptosis were investigated. Western blotting was performed to determine LC3-II accumulation, SQSTM1 degradation, and caspase-3 activity. Key findingsSIRT2 expression gradually decreased in a time-dependent manner during oocyte aging. Treatment with SirReal2 significantly increased the rates of oocyte activation, cytoplasmic fragmentation, and spindle defects. In particular, the high ROS levels, abnormal mitochondrial distribution, low ATP production, and lost ΔΨm were observed in SirReal2-exposed oocytes. Further analysis revealed that LC3-II accumulation and SQSTM1 degradation were induced by SIRT2 inhibition. By performing early apoptosis analysis showed that oocyte aging was accompanied with cellular apoptosis, and SIRT2 inhibition increased apoptosis rates of aged oocytes. Importantly, upregulating autophagy with Rapamycin could mimic the effects of SIRT2 inhibition on apoptosis by increasing caspase-3 activation, whereas downregulating autophagy with 3-MA could abolish those effects by blocking caspase-3 activation. SignificanceOur results suggest that SIRT2 inactivation is a key mechanism underlying of cellular aging, and SIRT2 inhibition contributes to autophagy-dependent cellular apoptosis in post-maturation oocytes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.