Abstract

Sir2 (silent information regulator-2), an NAD(+)-dependent histone deacetylase, is highly conserved in organisms ranging from archaea to humans. Yeast Sir2 is responsible for silencing at repeated DNA sequences in mating-type loci, telomeres and rDNA, and plays critical roles in DNA repair, stress resistance and longevity.The phenomenon of human aging is known to be a critical cardiovascular risk factor. Senescence of endothelial cells has been proposed to be involved in vascular dysfunction and atherogenesis. Recent studies have demonstrated that mammalian Sirt1 NAD(+)-dependent protein deacetylase, the closest homologue of Sir2, regulates vascular angiogenesis, homeostasis and senescence. This review focuses on SIRT1 as a potential therapeutic target against atherosclerosis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.