Abstract

Dexamethasone (Dex) is reported to cause bone growth retardation in children, which is associated with the increased apoptosis and decreased proliferation of growth plate chondrocytes. Sirtuin 1 (SIRT1) plays an important role in chondrocyte function and homeostasis. Thus, we further explored the regulatory mechanism of SIRT1 in Dex-induced growth plate chondrocyte dysfunction. SIRT1 expression was detected in Dex-treated growth plate chondrocytes using RT-qPCR and western blot assay. The modulation of SIRT1 on SOX2 expression was evaluated. Besides, we identified that SIRT1 was targeted by miR-211-5p using TargetScan and RNA pull-down assay. A loss-of-function assay was performed to evaluate the effects of miR-211-5p on Dex-induced growth plate chondrocyte dysfunction in vitro and in vivo. We found that SIRT1 was downregulated in Dex-treated growth plate chondrocytes. The expression of SOX2 was upregulated by overexpression SIRT1. Meanwhile, downregulation of SOX2 weakened the positive function of SIRT1 overexpression on Dex-induced growth plate chondrocytes dysfunction. Subsequently, we confirmed that SIRT1 was targeted by miR-211-5p. MiR-211-5p inhibitor increased the expression levels of SIRT1 and SOX2, and restored the Dex-treated growth plate chondrocyte function. Animal assays further demonstrated that the effects of miR-211-5p on the growth plate chondrogenesis. In conclusion, our data suggest that SIRT1 exerts a protective effect on growth plate chondrocyte under Dex stimulation. MiR-211-5p/SIRT1/SOX2 axis regulates the process of Dex-inhibited growth plate chondrogenesis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call