Abstract
Type 2 diabetes is characterized by insulin resistance, which manifests mainly in skeletal muscles. SIRT1 has been found to play a role in the insulin signaling pathway. However, the molecular underpinnings of SIRT1's function in palmitate fatty acid-induced apoptosis still need to be better understood. In this research, skeletal muscle cells are treated with palmitate to be insulin resistant. It is approached that SIRT1 is downregulated in C2C12 muscle cells during palmitate-induced apoptosis and that activating SIRT1 mitigates this effect. Based on these findings, palmitate-induced apoptosis suppressed mitochondrial biogenesis by lowering PGC-1 expression, while SIRT1 overexpression boosted. The SIRT1 inhibitor sirtinol, on the other hand, decreased mitochondrial biogenesis under the same conditions. This research also shows that ROS levels rise in the conditions necessary for apoptosis induction by palmitate, and ROS inhibitors can mitigate this effect. This work demonstrated that lowering ROS levels by boosting SIRT1 expression inhibited apoptotic induction in skeletal muscle cells. This study's findings suggested that SIRT1 can improve insulin resistance in type 2 diabetes by slowing the rate of lipo-apoptosis and boosting mitochondrial biogenesis, among other benefits.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.