Abstract
Vaccination is important for the control of some infectious diseases. This paper considers two SIR-SVS epidemic models with vaccination, where it is assumed that the vaccination for the newborns is continuous in the two models, and that the vaccination for the susceptible individuals is continuous and impulsive, respectively. The basic reproduction numbers of two models, determining whether the disease dies out or persists eventually, are all obtained. For the model with continuous vaccination for the susceptibles, the global stability is proved by using the Lyapunov function. Especially for the endemic equilibrium, to prove the negative definiteness of the derivative of the Lyapunov function for all the feasible values of parameters, it is expressed in three different forms for all the feasible values of parameters. For the model with pulse vaccination for the susceptibles, the global stability of the disease free periodic solution is proved by the comparison theorem of impulsive differential equations. At last, the effect of vaccination strategies on the control of the disease transmission is discussed, and two types of vaccination strategies for the susceptible individuals are also compared.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.