Abstract

In this paper, an SIRS epidemic model using Grunwald–Letnikov fractional-order derivative is formulated with the help of a nonlinear system of fractional differential equations to analyze the effects of fear in the population during the outbreak of deadly infectious diseases. The criteria for the spread or extinction of the disease are derived and discussed on the basis of the basic reproduction number. The condition for the existence of Hopf bifurcation is discussed considering fractional order as a bifurcation parameter. Additionally, using the Grunwald–Letnikov approximation, the simulation is carried out to confirm the validity of analytic results graphically. Using the real data of COVID-19 in India recorded during the second wave from 15 May 2021 to 15 December 2021, we estimate the model parameters and find that the fractional-order model gives the closer forecast of the disease than the classical one. Both the analytical results and numerical simulations presented in this study suggest different policies for controlling or eradicating many infectious diseases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.