Abstract

Objective Breast cancer accounts for significant mortality worldwide. Here, we develop a localized, sustained-release delivery system for breast cancer therapy. Methods Sirolimus (SIR) core-shell nanofibers (NFs) are fabricated by coaxial electrospinning with poly(ε-caprolactone) (PCL) for the core and chitosan and PCL for the shell. The NFs were characterized by SEM, AFM, TEM, XRD, FTIR, water uptake, water contact angle, mechanical properties, drug content, and in vitro release. In vitro and in vivo anticancer effects were investigated. Results A sustained release behavior is observed during 480 h that is more extended compared to monoaxial NFs. In vitro cytotoxicity and Annexin V/propidium iodide assays indicate that SIR-loaded coaxial NFs are effective in inhibiting proliferation of 4T1 and MCF-7 cells. Implantation of SIR NFs in 4T1 breast tumor-bearing mice inhibits tumor growth significantly compared to free drug. Histopathological examination shows that suppression of tumor growth by SIR NFs is associated with apoptotic cell death. Furthermore, anti-cancer effects are also confirmed by decreased expression levels of Ki-67, MMP-2, and MMP-9. Histological observation of organs, serological analyses, and the lack of body weight changes indicate in vivo safety of SIR NFs. Conclusions Altogether, we show here that incorporation of SIR into core-shell NFs could act as an effective drug release depot and induce a sustained antitumor response.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.