Abstract

Leukocyte recruitment plays a key role in chronic inflammatory diseases such as cardiovascular disease, rheumatoid arthritis, and cancer. Leukocyte rolling and arrest are mediated in part by the temporally-regulated surface expression of vascular cell adhesion molecule-1 (VCAM1) on endothelial cells (ECs). In this paper, we engineered a pH-responsive vehicle comprised of 30 mol% dimethylaminoethyl methacrylate (30D) and 70 mol% hydroxyethyl methacrylate (70H) to encapsulate, protect, and deliver VCAM1 small interfering RNA (siRNA). The ability of siRNA to reduce VCAM1 gene expression is in direct opposition to its activation by cytokines. At 12 h post-activation, VCAM1 gene knockdown was 90.1 ± 7.5% when delivered via 30D/70H nanoparticles, which was on par with a leading commercial transfection agent. This translated into a 68.8 ± 6.7% reduction in the surface density of VCAM1 on cytokine-activated ECs. The pH-responsive delivery of VCAM1 siRNA efficiently reduced temporal surface protein expression, which may be used to avert leukocyte recruitment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call