Abstract
The problem of finding and identifying semantics of images is applied in multimedia applications of many different fields such as Hospital Information System, Geographic Information System, Digital Library System, etc. In this paper, we propose the semantic-based image retrieval (SBIR) system based on the deep learning technique; this system is called as SIR-DL that generates visual semantics based on classifying image contents. At the same time we identify the semantics of similar images on Ontology, which describes semantics of visual features of images. Firstly, the color and spatial features of segmented images are we extracted and these visual feature vectors are trained on the deep neural network to obtain visual words vectors. The process of image retrieval is executed rely on semantic classification of SIR-DL according to the visual feature vector of the query image from which it produces a visual word vector. Then, we retrieve it on Ontology to provide the identities and the semantics of similar images corresponds to a similarity measure. In order to carry out SIR-DL, the algorithms and diagram of this image retrieval system are proposed after that we implement them on ImageCLEF@IAPR, which has 20,000 images. On the base of the experimental results, the effectiveness of our method is evaluated by the accuracy, precision, recall, and F-measure; these results are compared with some of works recently published on the same image dataset. It shows that SIR-DL effectively solves the problem of semantic-based image retrieval and can be used to build multimedia systems in many different fields.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.