Abstract
Dengue is transmitted by the Aedes aegypti mosquito as a vector, and a recent outbreak was reported in several districts of Lima, Peru. We conducted a modeling study to explain the transmission dynamics of dengue in three of these districts according to the demographics and climatology. We used the weekly distribution of dengue cases in the Comas, Lurigancho, and Puente Piedra districts, as well as the temperature data to investigate the transmission dynamics. We used maximum likelihood minimization and the human susceptible-infected-recovered and vector susceptible-infected (SIR-SI) model with a Gaussian function for the infectious rate to consider external non-modeled variables. We found that the adjusted SIR-SI model with the Gaussian transmission rate (for modelling the exogenous variables) captured the behavior of the dengue outbreak in the selected districts. The model explained that the transmission behavior had a strong dependence on the weather, cultural, and demographic variables while other variables determined the start of the outbreak. The experimental results showed good agreement with the data and model results when a Bayesian-Gaussian transmission rate was employed. The effect of weather was also observed, and a strong qualitative relationship was obtained between the transmission rate and computed effective reproduction number Rt.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.