Abstract

Based on Wire free Die on Die disruptive technology (WDoDTM), complex SiPs can be manufactured in a small factor package size. Stacking known good rebuilt wafers allows high yields while integrating high performance devices (1). Wafer processing is done with e-WLB technology and a specific redistribution layer (RDL) is designed to match with 3D PLUS bus metal edge interconnect technology. 300 mm rebuilt wafers are processed and thinned down to 200 μm before stacking and polymer bonding. Bonding alignment is within ±5 μm allowing small lateral pitches demonstrating WDoDTM versatility with denser IO products such as FPGA. Besides, this new process integration scheme allows the stacking of both conventional boards with SMDs not available at wafer level together with rebuilt wafers made of known good dies. WDoDTM technology has been successfully used with different kind of products in the defense and medical markets. A calculator node including a 484 I/O FPGA with 2 mDDR and an EEPROM in addition to more than 150 decoupling capacitors was manufactured and is exhibiting better electrical performance when compared to the 2 dimensions version. Moreover, a medical implant has been successfully developed embedding 2 ASICS and several PICS capacitors allowing an 8 times shrink of the electronics compared to advance lead based pacemakers.. With this new technology, 3D PLUS is highlighting the way to highly integrated System in Package (SiP) and demonstrates its know-how in the three dimensional integration.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.