Abstract

Despite the many advances in the field of regenerative medicine, the use of biomaterials to repair the cartilaginous tissue's traumatic injuries is still a challenge. Based on that, this research focuses on the semi-interpenetrating polymeric scaffolds (SIPNs) based PLLA and PHEMA. The material was produced in the solvent absence as a strategy to outline the critical limitations of hydrophilicity and the lack of biological interaction of biomaterials with the surrounding tissues. To this end, the thermal properties and chemical structure were characterized using thermogravimetric analysis and spectroscopy in the Fourier transform infrared. Besides, we assessed porosity and tissue interactions by scanning electron microscopy, and the influence of this in the swelling capacity tests. In vitro and in vivo assays and histological analysis were developed to assess the biocompatibility of SIPNs scaffolds. The results showed good thermal stability, porosity in the range of 53.73 to 94.34 μm, absence of toxicity, and excellent in vitro cell adhesion and growth. The biomaterial also promoted a great template for cell migration and spreading in vivo, with high cartilaginous tissue remodeling. SIPNs scaffolds demonstrated its biocompatibility and potential use in tissue engineering.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call