Abstract

Exploring mmWave frequencies and adopting small-cell architectures are two key enablers for increased wireless data rates. To make these evolutions economically viable, centralized architectures based on radio-over-fiber (RoF) are devised. To reduce the complexity of the cellular network even further, RF-over-Fiber transmission schemes are adopted in combination with reflective uplink operation. This paper relies on a very low complexity narrowband GaAs electronics / Si photonics transceiver for scalable RFoF architectures with which we demonstrate a fiber-wireless link capable of transmitting over 7 Gb/s in down- and uplink for a 2 km fiber and 5 m wireless link in the 28 GHz band. Furthermore, it is shown that Rayleigh degradation caused by reflective uplink operation can be avoided by using a coherent detection scheme.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call