Abstract

Wastewater discharged from industrial, agricultural and livestock production contains a large number of harmful bacteria and organic pollutants, which usually cause serious harm to human health. Therefore, it is urgent to find a "one-stone-two-birds" strategy with good antimicrobial and pollutant degradation activity for treating waste water. In this paper, SiO2@AuAg/Polydopamine (SiO2@AuAg/PDA) core/shell nanospheres, which possessed synergistic "Ag+-release-photothermal" antibacterial and catalytic behaviors, have been successfully prepared via a simple in situ redox polymerization method. The SiO2@AuAg/PDA nanospheres showed good catalytic activity in reducing 4-nitrophenol to 4-aminophenol (0.576 min-1 mg-1). Since the AuAg nanoclusters contain both gold and silver elements, they provided a high photothermal conversion efficiency (48.1%). Under NIR irradiation (808 nm, 2.5 W-2), the catalytic kinetics were improved by 2.2 times. Besides the intrinsic Ag+-release, the photothermal behavior originating from the AuAg bimetallic nanoclusters and the PDA component of SiO2@AuAg/PDA also critically improved the antibacterial performance. Both E. coli and S. aureus could be basically killed by SiO2@AuAg/PDA nanospheres at a concentration of 90 μg mL-1 under NIR irradiation. This "Ag+-release-photothermal" coupled sterilization offers a straightforward and effective approach to antimicrobial therapy, and further exhibits high potential in nanomedicine for combating bacterial contamination in environmental treatment and biological fields.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call