Abstract

This work aims on the degradation performance of (SiO2)100-x-Nix (x = 2.5, 10.0) photoanodes incorporating with liquid and gel polymer electrolyte for dye-sensitized solar cell (DSSC). The silica doped with nickel and gel polymer electrolyte was prepared by sol-gel polymerization of tetraethyl orthosilicate and sol-gel polymerization of polyacrylonitrile (PAN), respectively. The utilization of PAN-based gel polymer electrolyte improved the value of open circuit voltage due to its high ionic conductivity and mechanical stability in DSSC. The (SiO2)90.0-Ni10.0-based DSSC utilizing PAN-based gel polymer electrolyte exhibited the highest power conversion efficiency of 2.96%. The field emission electron microscopy images show larger average particle size with greater porosity in the (SiO2)90.0-Ni10.0 thin film. Moreover, the Brunauer-Emmett-Teller analysis determines greater active surface area on (SiO2)90.0-Ni10.0 thin films that indicates more dye molecules may adsorb on the mesoporous photoanode to facilitate electron transport in the DSSC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.