Abstract

The v=1 and v=2 J=1-0 (43 GHz), and v=1 J=2-1 (86 GHz) SiO masers are intense in AGB stars and have been mapped using VLBI showing ring-like distributions. Those of the v=1, v=2 J=1-0 masers are similar, but the spots are rarely coincident, while the v=1 J=2-1 maser arises from a well separated region farther out. These relative locations can be explained by models tools that include the overlap of two IR lines of SiO and H2O. The v=3 J=1-0 line is not directly affected by any line overlap and its spot structure and position, relative to the other lines, is a good test to the standard pumping models. We present single-dish and simultaneous VLBI observations of the v=1, v=2, and v=3 J=1-0 maser transitions of 28SiO in several AGB stars. The spatial distribution of the SiO maser emission in the v=3 J=1-0 transition from AGB stars is systematically composed of a series of spots that occupy a ring-like structure. The overall ring structure is extremely similar to that found in the other 43 GHz transitions and is very different from the structure of the v=1 J=2-1 maser. The positions of the individual spots of the different 43 GHz lines are, however, very rarely coincident, which in general is separated by about 0.3 AU (between 1 and 5 mas). These results are very difficult to reconcile with standard pumping models, which predict that the masers of rotational transitions within a given vibrational state require very similar excitation conditions, while the transitions of different vibrational states should appear in different positions. However, models including line overlap tend to predict v=1, v=2, v=3 J=1-0 population inversion to occur under very similar conditions, while the requirements for v=1 J=2-1 appear clearly different, and are compatible with the observational results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call