Abstract

Bond critical point properties of electron density distributions calculated for representative Si5O16 moieties of the structure of coesite are compared with those observed and calculated for the bulk crystal. The values calculated for the moieties agree with those observed to within ∼5%, on average, whereas those calculated for the crystal agree to within ∼10%. As the SiOSi angles increase and the SiO bonds shorten, there is a progressive build-up in the calculated electron density along the bonds. This is accompanied by an increase in both the curvatures of the electron density, both perpendicular and parallel to each bond, and the Laplacian of the electron density distribution at the bond critical points. The cross sections of the bonds at the critical points become more circular as the angle approaches 180o. Also, the bonded radius of the oxide anion decreases about twice as much as that of the Si cation as the SiO bond length decreases and the fraction of s-character of the bond is indicated to increase. A knowledge of electron density distributions is central to our understanding of the forces that govern the structure, properties, solid state reactions, surface reactions and phase transformations of minerals. The software (CRYSTAL95 and TOPOND) used in this study to calculate the bond critical properties of the electron density and Laplacian distributions is bound to promote a deeper understanding of crystal chemistry and properties.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call