Abstract

In the micro-machining process for fabricating optical devices, the fast atomic-beam etching (FABE) or the ion-beam etching (IBE) is used. However, the etch rates of these processes are typically around a few tens nm/min, so the higher etch-rate is strongly required to reduce the processing time. We investigated an etching process of a silicon-dioxide (SiO 2 ) using an electron-beam-excited plasma (EBEP) to realize a novel micro-machining process without any bias-power supply. The EBEP has an excellent potential for applying self-bias to the non-planar thick dielectric materials with the high-density electron beam. In the direct current (DC)-EBEP, the non-uniformity of etching and the thermal damage to photo-resist were observed. To overcome these problems, we have developed a pulse-modulated EBEP, and thus the non-uniformity of etching and the thermal damage were improved. Moreover, the maximum etch-rate of 450 nm/min was obtained and an anisotropy etching was realized. An optical fiber as a non-planar material was etched to demonstrate the application of this process. The clad area was etched for fabricating a core lens. We have found that the pulse-time-modulated EBEP has an excellent potential to realize micro-fabrications of optical fibers with the etch rate several times higher than that of the conventional FABE and IBE processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call