Abstract

—This article presents a sinusoidal pulse-width modulated three-phase multi-level inverter topology. In this configuration, the basic two-level, three-phase inverter is modified to synthesize higher voltage levels by the insertion of two auxiliary switches per phase leg. The multi-level inverter configuration generates output voltage levels similar to the corresponding well-known conventional diode-clamped flying capacitors and cascaded H-bridge inverters but with fewer power circuit components and more simplicity. For output voltage and frequency variations demanded by such applications as variable-speed drives, active power filters, photovoltaic power conversions, etc., the sinusoidal pulse-width modulation technique is employed in the generation of the gating signals for the proposed three-phase multi-level inverter. A balanced three-phase R-L load is applied at the inverter output terminals, and the inverter performance is compared with that of other sinusoidal pulse-width modulated conventional multi-level inverter configurations. The validity of the proposed multi-level inverter topology and the modulation scheme are verified through simulations and experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.