Abstract

A new signal-processing method based on an electronic frequency down-conversion technique has been introduced into a sinusoidal phase-modulating, self-mixing interferometer. The developed interferometer employs an electro-optical crystal placed in the external cavity of a He-Ne laser to generate the sinusoidal phase modulation with high modulation rate and ultralow insertion loss. Phase quadrature signals which have been amplitude-modulated by the sine and cosine functions, respectively, of the measured displacement can be extracted from the high-density optical fringes through the use of dual-channel multiplier/filter circuits. Therefore, the displacement of the external target can be retrieved from the phase quadrature signals with nanometer resolution and high computational efficiency. Moreover, a much-improved measurement speed from 2.5 to 22 mm/s has been realized owing to the simplified signal-processing method. The performance of the proposed interferometer has been experimentally verified by comparison to an Agilent 5529A dual-frequency laser interferometer. The measurement results from the two instruments agree well, and we therefore expect that our new technique offers a powerful instrument for high-speed metrology sciences.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.