Abstract

Background & Aims : The mechanical origins of the obstruction in sinusoidal obstruction syndrome are initiated by dehiscence of sinusoidal endothelial cells from the space of Disse. The biochemical changes that permit the dehiscence of the sinusoidal endothelial cells were investigated. Methods : In vitro and in vivo studies examined changes induced by monocrotaline, a pyrrolizidine alkaloid that induces sinusoidal obstruction syndrome in both humans and experimental animals. Results : In the monocrotaline-induced rat model of sinusoidal obstruction syndrome, there was an early increase of matrix metalloproteinase-9 and a later, lower-magnitude increase of matrix metalloproteinase-2 in the liver. In vitro studies of sinusoidal endothelial cells, hepatocytes, stellate cells, and Kupffer cells showed that sinusoidal endothelial cells are the major source of both basal and monocrotaline-induced matrix metalloproteinase-9/matrix metalloproteinase-2 activity. Monocrotaline caused depolymerization of F-actin in sinusoidal endothelial cells, and blocking of F-actin depolymerization prevented the increase in matrix metalloproteinase activity. Administration of matrix metalloproteinase inhibitors prevented the signs and histological changes associated with sinusoidal obstruction syndrome. Conclusions : Monocrotaline causes depolymerization of F-actin in sinusoidal endothelial cells, which leads to increased expression of metalloproteinase-9 and matrix metalloproteinase-2 by sinusoidal endothelial cells. Inhibition of matrix metalloproteinase-9 and matrix metalloproteinase-2 prevents the development of sinusoidal obstruction syndrome, establishing that matrix metalloproteinase inhibitors may be a therapeutically viable strategy for prevention.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.