Abstract

In modern medicine, image recognition via segmentation of anatomical regions and automatic classification of diseases using medical images has a growing potential role in diagnosis of various diseases. Scintigraphy of thyroid is one of the established imaging modalities for diagnosis of thyroid gland disorders. In our study, the speckle noise was reduced in the scintigraphy images with the optimized Bayesian nonlocal mean filter. The thyroid gland was automatically segmented by local based active contour method and the thyroid gland pathologies were classified with convolutional neural networks (CNN). The proposed computer aided diagnosis (CAD) system was compared with Pyramid of Histograms of Orientation Gradients (PHOG), Gray Level Co occurrence Matrix (GLCM), Local Configuration Pattern (LCP) and Bag of Feature (BoF) methods. The common pathological patterns of scintigraphic images of the thyroid gland were successfully classified by CNN with an overall success rate of 91.19%. The comparative methods were PHOG, GLCM, LCP and BoF methods which provided overall success rates of 7.61%, 86.04%, 88.91% and 85.72% respectively. The proposed CNN based automatic diagnosis system provided promising results compared to handcrafted methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.