Abstract

Post-reaction sintering is one of the fabrication processes of Si3N4 ceramics, which has received considerable attention as a cost-effective process due to the use inexpensive Si powder as a raw material. So far, many researches on the development of this method have been performed in order to improve their properties; however, the sintering shrinkage behavior, which is valuable for the optimization of the firing conditions, has not been well clarified. In this study, we focus on the post-reaction sintering of the Si-Y2O3-Al2O3 system, and investigate its sintering shrinkage behavior by dilatometery. It was found that there is no shrinkage from 1400 to 1600 °C due to grain rearrangements in the green body of the reaction-bonded Si3N4. Furthermore, the shrinkage of the reaction-bonded Si3N4 commenced at approximately 1750 °C, which is higher than the shrinkage temperature of the green body of conventional Si3N4 powder. The restriction of the shrinkage appears to result from the neck growth and strong aggregation among the reacted Si3N4 particles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call