Abstract

Abstract Surfactant modified nano-origin ZnO–Bi2O3 varistor powder was prepared in presence of cetyltrimethyl ammonium bromide (CTAB) surfactant through an aqueous reflux reaction at 100 °C. The compacted varistor discs made from the nano-origin powders were subjected to step-sintering, microwave sintering and solid-state sintering. The influences of CTAB in different sintering methods were analyzed from the densification characteristics, evolution of sintered microstructures and associated varistor properties (I–V). The conventional solid-state sintering produced 96% theoretical sintered dense samples at 1100 °C. The step and microwave sintered samples showed 93% and 99% sintered densities, respectively, with controlled microstructures having grain sizes in the range of 2–6 μm at the given conditions. The CTAB advantages were clearly seen in grain structuring and grain boundary properties, in addition to the enhanced densification and homogenous microstructures for obtaining high breakdown voltage and non-linearity coefficient.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.