Abstract

AbstractSeveral foods contain semi‐solid fats that consist of solid crystals dispersed in a liquid oil. In oil‐continuous margarine, butter, and chocolate, fat crystals determine properties such as consistency, stability against oiling‐out, and emulsion stability. Trends toward foods with less fat and/or less saturated fat create a need for understanding and controlling the properties of fat crystal dispersions. Fat crystals form a network in oil due to mutual adhesion. One source of strong adhesion is formation of solid bridges (sintering), which has been studied in this work through sedimentation and rheological experiments. Results indicate that sintering may be created by crystallization of a fat phase with a melting point between that of the oil and the crystal. Generally speaking, β′ crystals were sintered by β′ fat bridges, favored by rapid cooling, and β crystals by β fat bridges, favored by slow cooling. The existence of the same polymorphic form of the crystal and bridge indicated that solid bridges, rather than bridges formed by small crystal nuclei, were formed. A maximum in sintering ability for an optimal sintering fat concentration occurred due to competition between bridge formation and other crystallization processes. Some emulsifiers influenced the sintering process. For example, monooolein made it more pronounced, while technical lecithin had the opposite effect.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.