Abstract

This paper studied the behaviors of sintering between Ag nanoparticle (NP) and nanoflake (NF) in the same size by molecular dynamics simulation. Before the sintering simulation, the melting simulation of NF was carried out to calculate the melting points of NFs and investigate the thermostability of NF. The Lindemann index and potential energy showed that the melting points of NF were significantly size-dependent. During the heating process, the sharp corner of NF transformed to the round corner and could bend spontaneously lower than melting points. In sintering simulation, the sintering process of NF-NP showed a metastable stage before equilibrium. Under low sintering temperature (500 K), the degree of plasticity sintering mechanism of NF-NP was more prominent, which generated more defects, such as amorphous atoms, dislocations, and stacking faults, than NP-NP. The sintered products of NF-NP also presented a better neck size and shrinkage than NP-NP in the same size. A new sintering behavior was observed: NF was bent toward the NP during the sintering. The bending curvature of NF increased as the thickness or the length/width decreased. For the NF with the ratio of length/width to thickness of 5:1, bending could further significantly facilitate neck growth. At 700 K, the plasticity mechanism dominated both the sintering processes of NF-NP and NP-NP. And NF-NP showed a larger diffusivity than NP-NP. At last, we investigated the effects of crystal misorientation, and found that a tilted grain boundary generated in the neck. The NF had the trend of rotation to decrease the crystal misorientation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.