Abstract

This paper presents a detailed study of microwave (MW) sintering of W-Ni-Fe heavy alloys (WHAs) with tungsten (W) content 90 to 98 mass pct (Ni and Fe mass ratio of 7 to 3) in comparison with conventional (CV) hydrogen sintering. Experimental results show that WHAs were MW sintered to fully dense (≥99 pct of theoretical) when heated to sintering temperatures at a heating rate of 50 K/min to 80 K/min (50 °C/min to 80 °C/min) and isothermally held for 2 to 10 minutes, with sintering cycle times of only 25 to 35 minutes (excluding the cooling time). The desired microstructures of finer W grains, more matrix phases, and lower W contiguity (in 95W and 98W) were produced compared to the counterparts by CV sintering. Such microstructural features offered the alloys excellent tensile properties: ultimate tensile strengths (UTS) 1080 to 1110 MPa and tensile elongation 22.1 to 26.8 pct in 90 to 95W, and UTS 920 MPa and elongation 11.2 pct in 98W. MW sintering appeared to be more effective in fabricating WHAs with W content ≥95 pct. It was observed that the superior UTS with MW-sintered alloys was mainly due to the fast heating and shortened isothermal holding times. Prolonged sintering led to substantial grain coarsening as a result of faster tungsten grain growth in MW sintering, and consequently deteriorated the tensile properties. The grain growth rate constant K achieved was calculated to be 5.1 μm3/s for MW sintering compared to 2.9 μm3/s for CV sintering. Fast heating and short isothermal holding times are thus suggested for the fabrication of WHAs by MW sintering.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.