Abstract

Cr3C2–NiCr cermets are used as metal cutting tools due to their relatively high hardness and low sintering temperatures. In this study, a powder mixture consisting of 75 wt% Cr3C2–25 wt% NiCr was sintered at four different temperatures and characterized for its microstructure and mechanical properties. The highest relative density obtained was 97% when sintered at 1350 °C. As the relative density increased, elastic modulus, transverse rupture strength, fracture toughness and hardness of the samples reached to a maximum of 314 GPa, 810 MPa, 10·4 MPa·m1/2 and 11·3 GPa, respectively. However, sintering at 1400 °C caused further grain growth and pore coalescence which resulted in decreasing density and degradation of all mechanical properties. Fracture surface investigation showed that the main failure mechanism was the intergranular fracture of ceramic phase accompanied by the ductile fracture of the metal phase which deformed plastically during crack propagation and enhanced the fracture toughness.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.