Abstract
BaCe0.7Zr0.1Y0.2O3-δ (BCZY) is one of the promising electrolytic candidate for solid oxide fuel cell (SOFC) due to its good proton conductivity and better stability. Herein, the effect of dual sintering aids such as CuO-Bi2O3 upon the sinterability at low temperature, improved electrochemical properties, and thermo-chemical changes about proton-conducting BaCe0.7Zr0.1Y0.2O3-δ electrolyte were investigated in detail. FESEM micrographs and shrinkage curves revealed significant improvement in sinterability and densifications of BCZY electrolyte. The dense pellets were sintered with CuO-Bi2O3 (2–3 mol %) as sintering aids at a temperature of 1150 °C for 5 h. The perfectly uniform distribution of sintering aids increased the linear shrinkage of BCZY from 5% till 19–21%. The crystallite size and grain growth within the structure was enhanced due to the formation of the melting phase of Bi2O3 and Cu2+ incorporation in the perovskite structure. The elevated and improved electrochemical measurement for BCZY with 2 mol% of CuO-Bi2O3 as sintering aid categorized it well suited for solid oxide fuel cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.