Abstract

ABSTRACT Green density of binder jetted parts are typically equal or lower than the powder tap density. Also, anisotropic green porosity distribution is expected because of the characteristics of the binder jetting (BJ) printing process. In this study, the microstructure evolution in terms of phases and porosity characteristics was studied. A transition from irregular-shape interconnected porosity in pre-sintered samples to closed quasi-spherical porosity for samples sintered at 1370°C was observed. EBSD phase map showed ∼2.73% of δ-ferrite in sample sintered at 1370°C. The anisotropic porosity distribution was revealed by a higher area fraction of aligned large pores (>35 µm), within the cross-section perpendicular to the building direction. Chemical analysis showed an increase of C, O and N on the green sample, while a strong decrease was found after sintering when compared with the powder chemistry. δ-ferrite onset, from phase equilibrium calculations, varies from ∼1250°C (sintered sample chemistry) to ∼1350°C (powder chemistry).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call