Abstract
ABSTRACT Green density of binder jetted parts are typically equal or lower than the powder tap density. Also, anisotropic green porosity distribution is expected because of the characteristics of the binder jetting (BJ) printing process. In this study, the microstructure evolution in terms of phases and porosity characteristics was studied. A transition from irregular-shape interconnected porosity in pre-sintered samples to closed quasi-spherical porosity for samples sintered at 1370°C was observed. EBSD phase map showed ∼2.73% of δ-ferrite in sample sintered at 1370°C. The anisotropic porosity distribution was revealed by a higher area fraction of aligned large pores (>35 µm), within the cross-section perpendicular to the building direction. Chemical analysis showed an increase of C, O and N on the green sample, while a strong decrease was found after sintering when compared with the powder chemistry. δ-ferrite onset, from phase equilibrium calculations, varies from ∼1250°C (sintered sample chemistry) to ∼1350°C (powder chemistry).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.