Abstract
AbstractMullite ceramic was prepared using kaolinite and synthesized alumina (combustion route) by solid‐state interaction process. The influence of TiO2 and MgO additives in phase formation, microstructural evolution, densification, and mechanical strengthening was evaluated in this work. TiO2 and MgO were used as sintering additives. According to the stoichiometric composition of mullite (3Al2O3·2SiO2), the raw materials, ie kaolinite, synthesized alumina, and different wt% of additives were wet mixed, dried, and uniaxially pressed followed by sintering at different temperature. 1600°C sintered samples from each batch exhibit enhanced properties. The 1 wt% TiO2 addition shows bulk density up to 2.96 g/cm3 with a maximum strength of 156.3 MPa. The addition of MgO up to 1 wt% favored the growth of mullite by obtaining a density and strength matching with the batch containing 1 wt% TiO2. These additives have shown a positive effect on mullite phase formation by reducing the temperature for complete mullitization by 100°C. Both additives promote sintering by liquid phase formation. However, the grain growth, compact microstructure, and larger elongated mullite crystals in MgO containing batch enhance its hardness properties.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Applied Ceramic Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.