Abstract

Sintering and aging behaviours of Al–Cu–Mg powder metallurgy (PM) alloy produced from elemental powders were examined. After evaluating results from thermal analysis, tests were carried out on Al–4Cu alloys with magnesium contents of 0.5, 1 and 2 wt-% and it was found that additions of 1 wt-% Mg was most effective for enhancing the transverse rupture strength (TRS) of the Al–Cu PM alloys for both as sintered and after a heat-treatment conditions. Grain size reduction in the range of 14–45% was achieved by adding magnesium into Al–Cu system. Analyses showed that produced alloys were composed of Al, Al2Cu, Al2CuMg and Al7Cu2Fe phases. Differential scanning calorimeter and dilatometer analyses revealed that alloys show swelling behaviour after the eutectic melting reaction at 548°C and swelling rates increasing as a function of magnesium content. Both high hardness value (120 HB) and TRS (650 MPa) were achieved via aging of Al4Cu1Mg alloy for 24 hours.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call