Abstract

Monophasic and multiphasic (two and three phases) sintered stainless steels were prepared both considering premixes of AISI 316LHC and AISI 434LHC stainless steels powders and using a prealloyed duplex stainless steel 25% Cr, 5% Ni, 2% Mo powder. Their fatigue crack propagation resistance was investigated both in air and under hydrogen charging conditions (0.5 M H 2SO 4 + 0.01 M KSCN aqueous solution; applied potential = −700 mV/SCE), considering three different stress ratios ( R = 0.1; 0.5; 0.75). Fatigue crack propagation micromechanisms were investigated by means of fracture surface scanning electron microscope (SEM) analysis. For all the investigated sintered stainless, fatigue crack propagation resistance is influenced by hydrogen charging and an increase of crack growth rates dependent on the steel microstructure is obtained. Experimental results also allow to identify the sintered stainless steel obtained from the prealloyed 25% Cr, 5% Ni, 2% Mo powder as the most resistant to fatigue crack propagation in air and under hydrogen charging conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.