Abstract
The aim of this study was to investigate the sinterability to improve the technical properties of ceramic bodies made from coal bottom ash and soda-lime glass cullet. Different mixtures of bottom ash and glass cullet were formulated. The amount of bottom ash was 100, 70, 50 and 30 wt.%. The particle size distribution was the same for all formulations. The mixture containing 50 wt.% bottom ash also had its particle size distribution changed. Samples were formed by dry pressing and then fired at 950, 1050 and 1150 degrees C. Samples were evaluated for linear shrinkage, water absorption, flexural mechanical resistance, scanning electronic microscopy, pyroplastic deformation and thermodilatometric analysis. The higher firing temperature led to a decrease in water absorption and increased linear shrinkage, mechanical resistance and pyroplastic deformation. This effect was also observed for addition of glass up to 50 wt.%. The effect of smaller particles of bottom ash was more significant for linear shrinkage and mechanical resistance of ceramic bodies fired at 1150 degrees C. The use of a finer powder contributed to increase these properties. The influence of finer particles on water absorption and mechanical resistance of ceramic bodies fired at 950 and 1050 degrees C was not significant.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Waste Management & Research: The Journal for a Sustainable Circular Economy
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.