Abstract
Generally, studies investigating the strapdown inertial navigation system/global navigation satellite system (SINS/GNSS)-integrated navigation of surface vessels focus on adaptive strong nonlinear algorithms to handle the system and measurement noise induced by the complex environment and motion state. However, these studies rarely consider the suitability of strong nonlinear adaptive optimization in all conditions or the existence of any restriction. The application conditions for these standard nonlinear filters with respect to the surface vessel SINS/GNSS require investigation. In this study, the estimation accuracy of the motion state obtained using the extended Kalman filter, unscented Kalman filter, and cubature Kalman filter in case of different vessel motions is compared based on the simulated ship sensor data obtained using a dynamic large surface vessel model under various marine conditions. Compared with previous studies, the data generator in this study simulates the actual ship movements under various conditions, based on which considerably detailed and practical analysis and conclusion can be realized in case of the SINS/GNSS-integrated navigation obtained using various standard nonlinear filters. In particular, the situations often encountered by large surface vessels during integrated navigation attributed to environmental interference or instrument failure, including system noise amplification, initial alignment error, and GPS outage, are investigated.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Electrical Engineering & Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.