Abstract

Linear receivers offer a low complexity option for multiantenna communication systems. Therefore, understanding the outage behavior of the corresponding SINR is important in a fading mobile environment. In this paper, we introduce a large deviation method, valid nominally for a large number M of antennas, which provides the probability density of the SINR of Gaussian channel MIMO minimum mean square error (MMSE) and zero-forcing (ZF) receivers, with arbitrary transmission power profiles and in the presence of receiver antenna correlations. This approach extends the Gaussian approximation of the SINR, valid for large M asymptotically close to the center of the distribution, to obtain the non-Gaussian tails of the distribution. Our methodology allows us to calculate the SINR distribution to next-to-leading order ( O(1/M)) and showcase the deviations from approximations that have appeared in the literature (e.g., the Gaussian or the generalized Gamma distribution). We also analytically evaluate the outage probability, as well as the uncoded bit-error-rate. We find that our approximation is quite accurate even for the smallest antenna arrays (2 × 2).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.