Abstract

This paper investigates joint transmit beampattern and phase shifts optimization techniques for a reconfigurable intelligent surface (RIS)-assisted multiple-input multiple-output (MIMO) radar in the presence of an eavesdropping target. We propose an optimization technique to maximize the signal-to-interference plus noise ratio (SINR) at the MIMO radar. However, the problem is non-convex due to the non-concavity of the secrecy rate function. To tackle this issue, we apply the block coordinate descent (BCD) algorithm to update the transmit power and the phase shifts of the RIS alternately. Specifically, we utilize the majorization-minimization (MM) algorithm to optimize the phase shifts for a given transmit power and utilize the first-order Taylor expansion to reformulate the problem as a convex problem to optimize the transmit power for a given set of phase shifts. Two transmit beamforming vectors are designed to detect the target and convey information safely to the legitimate receiver. Simulation results show that the RIS-assisted MIMO radar can significantly enhance the SINR compared to an ordinary MIMO radar.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call