Abstract

BackgroundIn the anoxia-tolerant crucian carp (Carassius carassius) cardiac activity varies according to the seasons. To clarify the role of autonomic nervous control in modulation of cardiac activity, responses of atrial contraction and heart rate (HR) to carbacholine (CCh) and isoprenaline (Iso) were determined in fish acclimatized to winter (4°C, cold-acclimated, CA) and summer (18°C, warm-acclimated, WA) temperatures.ResultsInhibitory action of CCh was much stronger on atrial contractility than HR. CCh reduced force of atrial contraction at an order of magnitude lower concentrations (EC50 2.75-3.5·10-8 M) in comparison to its depressive effect on HR (EC50 1.23-2.02·10-7 M) (P < 0.05) without differences between winter and summer acclimatized fish. Inhibition of nitric oxide synthase with 100 μM L-NMMA did not change the response of the sinoatrial tissue to CCh. Reduction of atrial force was associated with a strong shortening of action potential (AP) duration to ~50% (48 ± 10 and 50 ± 6% for CA and WA fish, respectively) and 11% (11 ± 3 and 11 ± 2% for CA and WA fish, respectively) of the control value at 3·10-8 M and 10-7 M CCh, respectively (P < 0.05). In atrial myocytes, CCh induced an inwardly rectifying K+ current, IK,CCh, with an EC50 value of 3-4.5·10-7 M and inhibited Ca2+ current (ICa) by 28 ± 8% and 51 ± 6% at 10-7 M and 10-6 M, respectively. These currents can explain the shortening of AP. Iso did not elicit any responses in crucian carp sinoatrial preparations nor did it have any effect on atrial ICa, probably due to the saturation of the β-adrenergic cascade in the basal state.ConclusionIn the crucian carp, HR and force of atrial contraction show cardio-depressive responses to the cholinergic agonist, but do not have any responses to the β-adrenergic agonist. The scope of inhibitory regulation by CCh is increased by the high basal tone of the adenylate cyclase-cAMP cascade. Higher concentrations of CCh were required to induce IK,CCh and inhibit ICa than was needed for CCh's negative inotropic effect on atrial muscle suggesting that neither IK,CCh nor ICa alone can mediate CCh's actions but they might synergistically reduce AP duration and atrial force production. Autonomic responses were similar in CA winter fish and WA summer fish indicating that cardiac sensitivity to external modulation by the autonomic nervous system is not involved in seasonal acclimatization of the crucian carp heart to cold and anoxic winter conditions.

Highlights

  • In the anoxia-tolerant crucian carp (Carassius carassius) cardiac activity varies according to the seasons

  • We hypothesized that autonomic regulation is involved in seasonal acclimatization of the crucian carp heart so that negative cholinergic responses would prevail in winter to down-regulate cardiac function in the cold and anoxic winter waters, while stimulatory adrenergic responses could be stronger in summer to allow enhancement of cardiac activity in warm and oxygen rich waters

  • Sinoatrial tissue of the crucian carp heart lacks positive chronotropic and inotropic responses to autonomic nervous agonists and contractility can be only down-regulated through activation of the muscarinic cholinergic receptors

Read more

Summary

Introduction

In the anoxia-tolerant crucian carp (Carassius carassius) cardiac activity varies according to the seasons. Crucian carp (Carassius carassius L.) is one of the most anoxia tolerant vertebrates and the only fish species in North temperate latitudes tolerates prolonged and total oxygen shortage. Winter acclimatized fish show depressed SL Na+ currents and increased K+ currents in the heart [10,11,12] These findings indicate that several intrinsic mechanisms of crucian carp cardiac myocytes are acclimatized to changing circulatory demands in seasonally varying habitat conditions and suggest that cardiac contractility is reduced in winter anoxia. The significance of extrinsic modulators of the heart, in particular the autonomic nervous regulation, is less well understood in the physiology of crucian carp and other anoxia-tolerant vertebrates

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.