Abstract

Phytoplankton cells are now recognized as dynamic entities rather than as passive and isolated particles because they can actively modulate impacts of selection factors (nutrients, light, turbidity, and mixing) through a wide range of adaptations. Cell shape and/or chain length modulation is one of these processes but has predominantly been studied as an adaptation or an acclimatation to a specific growth limitation (light, nutrients, predation, etc.). In this study we have demonstrated that cell shape and size may have greater roles than previously known in phytoplankton ecology and species adaptation by permitting cell-to-cell signaling and more complex ecological processes that result from it. By exploring microscale biophysical interactions that lead to specific cell reorientation processes, we demonstrated that cell geometry not only modulates cell sinking rates but can also provide fast sensor responses to the cells' environment. Although gyrotaxis has been described in detail for motile phytoplankton cells, our findings illustrate that the reorientation process described here can occur even in non-motile cells within their natural environment. An additional consistent behavior was also recently described for a diatom species (Pseudo-nitzschia delicatessima), and with this study, we extend this observation to Pseudo-nitzschia pungens and Pseudo-nitzschia fraudulenta. Our observations emphasize the generality of this process, which adds a new level of complexity to our understanding of cellular interactions and their network of sensors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.