Abstract
Phytoplankton assemblages were collected during spring blooms in 1982 in Washington State and in Hawaii. Sinking rate responses of these assemblages were examined under nitrate, phosphate, and silicate depletion. Ambient nutrient concentrations, chlorophyll concentrations, photosynthetic rates, sinking rates, and floristic compositions were determined. Under nutrient-replete conditions, the temperate assemblage, composed primarily of large centric diatoms, had a sinking rate of 0.96 m d-1; sinking rates did not change appreciably over 4 d without nitrate. Without phosphate or silicate, the sinking rates remained constant for 3 d and then increased after biomass indices began to decline. These findings illustrate the potential importance of phosphate or silicate depletion to the sedimentation of spring-bloom diatom populations. The subtropical assemblage, composed primarily of diatoms, coccolithophorids, and dinoflagellates, had an initial sinking rate of 0.22 m d-1 and did not display substantial sinking rate changes in the absence of nitrate, phosphate or silicate. Floristic data consistently showed a proliferation of pennate diatoms, which had lower settling rates than centric diatoms. Growth and sedimentation patterns indicated a competitive advantage for pennate diatom components of subtropical assemblages; this in turn may limit phytoplankton sedimentation losses in such ecosystems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.