Abstract

The sinking of initially buried irregular blocks into the seabed under wave-induced liquefaction was investigated by experimental methods. Pore-water pressure in the soil, water surface elevation time series and block displacements were measured. Results indicated that initiation of sinking coincides with the instant at which the accumulated pore-water pressure at the bottom level of the block reaches the initial mean normal effective stress. The drag forces and drag coefficients on steadily sinking irregular shaped blocks, as well as spherical and cubical ones, were calculated from the obtained data and compared with the available data in the literature. The results show that the shape of sinking block is of minor importance as far as the kinematics and dynamics of the sinking block is concerned. The conditions at which the sinking terminates are discussed in the light of experiments. Using the approach presented here, the ultimate sinking depths are calculated for the tested cases and compared with the experimental results. The calculated and measured values showed a reasonable agreement when compared. Finally a summary and remarks are presented to calculate the ultimate sinking depth of irregular shaped blocks for practical applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.