Abstract

AbstractAtom transport under irradiation is determined by the concentration of freely migrating defects, which depends on the dynamical equilibrium between production and annihilation rates. In order to determine effective values of both of these quantities for the case of ion irradiation, spatially resolved self-diffusion measurements were performed on single crystals of nickel which contained several thin tracer layers at different depths.For fixed depth the radiation-enhanced diffusion coefficient (DK) was determined as function of displacement rate (K0) and fluence (Φ). The DK essentially representing the ratio of the rates of production and annihilation was found to be proportional to K0 for 800 K irradiation temperature and to K00.4for Ni and K00.4for Kr irradiation at 950 K. It is independent of Φ for 800 K and decreases with increasing Φ for 950 K.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.