Abstract

AbstractHyperpolarisationsverstärkte Magnetresonanztomographie kann zur Untersuchung biomolekularer Prozesse im Körper verwendet werden, erfordert aber die Verwendung von Hetero‐Kernen wie 13C, 15N oder 129Xe. Hier stellen wir eine neue Art der Hyperpolarisierten Protonen Bildgebung vor, bei der die hyperpolarisierte Spinordnung in einem nicht magnetischen und langlebigen korrelierten (Singulett‐) Zustand eingeschlossen ist und nur durch eine spezifische biochemische Reaktion für die Bildgebung freigesetzt wird. In dieser Arbeit erzeugen wir hyperpolarisiertes Fumarat durch chemische Reaktion eines Eduktes mit para‐angereichertem Wasserstoffgas. Der Singulettzustand der Fumarat Protonen wird als Antiphasen‐NMR‐Signale durch enzymatische Umwandlung zu Malat in D2O freigesetzt. Anhand dieses Modellsystems zeigen wir zwei Pulssequenzen, um die NMR‐Signale für die Bildgebung zu rephasieren und die Hintergrundsignale von Wasser zu unterdrücken. Die hier vorgestellte hyperpolarisationsverstärkte Protonen Bildgebungstechnik ermöglicht eine hyperpolarisierte Bildgebung, ohne dass hierfür Hetero‐Kerne mit ihrer niedrigen natürlichen Häufigkeit und geringen Empfindlichkeit benötigt werden.

Highlights

  • Magnetic resonance imaging (MRI) is a powerful clinical technique most commonly used to produce structural images of the human body from observation of water and fat molecules, which are detectable because of their relatively high concentration

  • Pulse sequence optimization To optimise the parameters of the two of-phase echo (OPE) sequences, experiments were performed on a sample of malate-D2 in D2O at thermal equilibrium

  • parahydrogen induced polarization (PHIP) shuttling experiments To demonstrate the pulse sequences in hyperpolarized nuclear magnetic resonance (NMR) experiments we used the following procedure: (1) bubble para-enriched hydrogen gas into the precursor solution to produce hyperpolarized fumarate; (2) pneumatically shuttle the sample into an NMR tube containing fumarase in D2O held in an 11.7 T magnet; (3) apply either OPE-45, OPE-s90, or a 45° pulse every 4 s and detect the resulting NMR signal

Read more

Summary

Introduction

Magnetic resonance imaging (MRI) is a powerful clinical technique most commonly used to produce structural images of the human body from observation of water and fat molecules, which are detectable because of their relatively high concentration. Recent advances in the field of hyperpolarization-enhanced nuclear magnetic resonance (NMR) have made it possible to produce metabolites with NMR signal enhancements of 104-105 1–15. One example of such a hyperpolarization method is parahydrogen induced polarization (PHIP) in which hydrogen gas enriched in the para spin isomer is chemically reacted with an unsaturated molecule to generate a product with hyperpolarized 1H nuclear spins . PHIP is renowned for being inexpensive, simple to use, and allows for the production of hyperpolarized substrates with a high repetition cycle

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.