Abstract

The paper deals with the Neumann spectral problem for a singularly perturbed second-order elliptic operator with bounded lower order terms. The main goal is to provide a refined description of the limit behaviour of the principal eigenvalue and eigenfunction. Using the logarithmic transformation, we reduce the studied problem to an additive eigenvalue problem for a singularly perturbed Hamilton–Jacobi equation. Then assuming that the Aubry set of the Hamiltonian consists of a finite number of points or limit cycles situated in the domain or on its boundary, we find the limit of the eigenvalue and formulate the selection criterion that allows us to choose a solution of the limit Hamilton–Jacobi equation which gives the logarithmic asymptotics of the principal eigenfunction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.