Abstract
A new approach for feedback linearization of attitude dynamics for rigid gas jet-actuated spacecraft control is introduced. The approach is aimed at providing global feedback linearization of the spacecraft dynamics while realizing a prescribed linear attitude deviation dynamics. The methodology is based on nonuniqueness representation of underdetermined linear algebraic equations solution via nullspace parametrization using generalized inversion. The procedure is to prespecify a stable second-order linear time-invariant differential equation in a norm measure of the spacecraft attitude variables deviations from their desired values. The evaluation of this equation along the trajectories defined by the spacecraft equations of motion yields a linear relation in the control variables. These control variables can be solved by utilizing the Moore–Penrose generalized inverse of the involved controls coefficient row vector. The resulting control law consists of auxiliary and particular parts, residing in the nullspace of the controls coefficient and the range space of its generalized inverse, respectively. The free null-control vector in the auxiliary part is projected onto the controls coefficient nullspace by a nullprojection matrix, and is designed to yield exponentially stable spacecraft internal dynamics, and singularly perturbed feedback linearization of the spacecraft attitude dynamics. The feedback control design utilizes the concept of damped generalized inverse to limit the growth of the Moore–Penrose generalized inverse, in addition to the concepts of singularly perturbed controls coefficient nullprojection and damped controls coefficient nullprojection to disencumber the nullprojection matrix from its rank deficiency, and to enhance the closed loop control system performance. The methodology yields desired linear attitude deviation dynamics realization with globally uniformly ultimately bounded trajectory tracking errors, and reveals a tradeoff between trajectory tracking accuracy and damped generalized inverse stability. The paper bridges a gap between the nonlinear control problem applied to spacecraft dynamics and some of the basic generalized inversion-related analytical dynamics principles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.