Abstract
Fractional Brownian motion acts as a random process with statistical self-similarity in time and self-affinity in shape. From these properties, the complicated patterns can be suitably represented by it with a minimal parameter and less memory. By considering its statistical property through the power spectrum density we can see that this process is not stationary, even though its differential motion is stationary. So in this paper, by taking the wavelet transfom instead of Fourier transformation we investigate its multi-fractal spectrum as a multi-fractal model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.