Abstract
Practical application of the task-priority redundancy resolution technique must deal with the occurrence of kinematic and algorithmic singularities. The aim of this paper is twofold. First, the application of existing singularity-robust methods to the case of kinematically redundant arms is studied. Then, a new task-priority redundancy resolution technique is developed that overcomes the effects of algorithmic singularities. Computational aspects of the solutions are also considered in view of real-time implementation of a kinematic control algorithm. The method is applied to a seven-degree-of-freedom manipulator in numerical case studies to demonstrate its effectiveness.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.