Abstract

A line of recent work has analyzed the behavior of the Expectation-Maximization (EM) algorithm in the well-specified setting, in which the population likelihood is locally strongly concave around its maximizing argument. Examples include suitably separated Gaussian mixture models and mixtures of linear regressions. We consider over-specified settings in which the number of fitted components is larger than the number of components in the true distribution. Such mis-specified settings can lead to singularity in the Fisher information matrix, and moreover, the maximum likelihood estimator based on $n$ i.i.d. samples in $d$ dimensions can have a nonstandard $\mathcal{O}((d/n)^{\frac{1}{4}})$ rate of convergence. Focusing on the simple setting of two-component mixtures fit to a $d$-dimensional Gaussian distribution, we study the behavior of the EM algorithm both when the mixture weights are different (unbalanced case), and are equal (balanced case). Our analysis reveals a sharp distinction between these two cases: in the former, the EM algorithm converges geometrically to a point at Euclidean distance of $\mathcal{O}((d/n)^{\frac{1}{2}})$ from the true parameter, whereas in the latter case, the convergence rate is exponentially slower, and the fixed point has a much lower $\mathcal{O}((d/n)^{\frac{1}{4}})$ accuracy. Analysis of this singular case requires the introduction of some novel techniques: in particular, we make use of a careful form of localization in the associated empirical process, and develop a recursive argument to progressively sharpen the statistical rate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.